Complete results and additional material for the article “PCTBagging: From Inner Ensembles to Ensembles. A trade-off between Discriminating Capacity and Interpretability”
2021-12-01
This page contains the full tables related to the work presented in the article:
Igor Ibarguren, Jesús M. Pérez, Javier Muguerza, Olatz Arbelaitz and Ainhoa Yera.
"PCTBagging: From Inner Ensembles to Ensembles. A trade-off between Discriminating Capacity and Interpretabibility". Information Sciences (2022), Vol. 583, pp 219-238.
First, we present the table with the characteristics for the 96 datasets used in this study, divided into three contexts.
Then, for each of the evaluation measures, we include the full tables of the results related to the different proposed consolidation percentages of PCTBagging, Bagging, CTC and C4.5.
All the tables of results can be downloaded as an Excel document or as a CSV file.
Content
2 Subsample
numbers by data set to achieve the selected coverage value
3. Results for the discriminating capacity, structural
complexity, and computational cost measures.
Index of Tables
Table 1. Description of standard
datasets.
Table 2. Description
of imbalanced datasets.
Table 3.
Subsample numbers for standard data sets.
Table 4:Subsample
amounts for imbalanced data sets
Table 5. AUC
values for all algorithms over 96 datasets.
Table 6. Number
of Internal Nodes values for all algorithms over 96 datasets.
Table 7. Time
values for all algorithms over 96 datasets.
This section contains the tables with the characteristics for the 96 datasets from the KEEL repository used in this study. First we present the datasets from the first (Standard) context and then from the second (Imbalanced) context. SMOTE-preprocessed datasets have the same characteristics as the datasets from Table 2, but the minority class oversampled until it has the majority class’ size.
Table 1. Description of standard datasets.
Data set |
#Ants |
#Examples |
#Classes |
%min |
%maj |
Size Of Min. Class |
Size of Maj. Class |
|
lymphography |
18 |
148 |
4 |
1.36% |
54.73% |
2 |
81 |
|
ecoli |
7 |
336 |
8 |
0.6% |
42.56% |
2 |
143 |
|
car |
6 |
1728 |
4 |
3.77% |
70.03% |
65 |
1210 |
|
nursery |
8 |
1296 |
5 |
0.08% |
33.34% |
1 |
432 |
|
cleveland |
13 |
297 |
5 |
4.38% |
53.88% |
13 |
160 |
|
zoo |
17 |
101 |
7 |
3.97% |
40.6% |
4 |
41 |
|
glass |
9 |
214 |
6 |
4.21% |
35.52% |
9 |
76 |
|
flare |
10 |
1066 |
6 |
4.04% |
31.06% |
43 |
331 |
|
abalone |
8 |
418 |
22 |
0.24% |
16.51% |
1 |
69 |
|
balance |
4 |
625 |
3 |
7.84% |
46.08% |
49 |
288 |
|
dermatology |
33 |
358 |
6 |
5.59% |
31.01% |
20 |
111 |
|
hepatitis |
19 |
80 |
2 |
16.25% |
83.75% |
13 |
67 |
|
newthyroid |
5 |
215 |
3 |
13.96% |
69.77% |
30 |
150 |
|
haberman |
3 |
306 |
2 |
26.48% |
73.53% |
81 |
225 |
|
breast |
9 |
277 |
2 |
29.25% |
70.76% |
81 |
196 |
|
german |
20 |
1000 |
2 |
30% |
70% |
300 |
700 |
|
wisconsin |
9 |
630 |
2 |
34.61% |
65.4% |
218 |
412 |
|
contraceptive |
9 |
1473 |
3 |
22.61% |
42.71% |
333 |
629 |
|
tictactoe |
9 |
958 |
2 |
34.66% |
65.35% |
332 |
626 |
|
pima |
8 |
768 |
2 |
34.9% |
65.11% |
268 |
500 |
|
magic |
10 |
1902 |
2 |
35.13% |
64.88% |
668 |
1234 |
|
wine |
13 |
178 |
3 |
26.97% |
39.89% |
48 |
71 |
|
bupa |
6 |
345 |
2 |
42.03% |
57.98% |
145 |
200 |
|
heart |
13 |
270 |
2 |
44.45% |
55.56% |
120 |
150 |
|
australian |
14 |
690 |
2 |
44.5% |
55.51% |
307 |
383 |
|
crx |
15 |
653 |
2 |
45.33% |
54.68% |
296 |
357 |
|
vehicle |
18 |
846 |
4 |
23.53% |
25.77% |
199 |
218 |
|
penbased |
16 |
1100 |
10 |
9.55% |
10.46% |
105 |
115 |
|
ring |
20 |
740 |
2 |
49.6% |
50.41% |
367 |
373 |
|
iris |
4 |
150 |
3 |
33.34% |
33.34% |
50 |
50 |
|
Mean |
11.77 |
638.93 |
4.27 |
21% |
50% |
139 |
319.93 |
|
Median |
9.5 |
521.5 |
3 |
23% |
54% |
73 |
209 |
Table 2. Description
of imbalanced datasets.
Data set |
#Atts. |
#Examples |
Imbalance |
Size Of Min. Class |
Size of Maj. Class |
Abalone19 |
8 |
4174 |
0.77% |
32 |
4142 |
Yeast6 |
8 |
1484 |
2.49% |
37 |
1447 |
Yeast5 |
8 |
1484 |
2.96% |
44 |
1440 |
Yeast4 |
8 |
1484 |
3.43% |
51 |
1433 |
Yeast2vs8 |
8 |
482 |
4.15% |
20 |
462 |
Glass5 |
9 |
214 |
4.2% |
9 |
205 |
Abalone9vs18 |
8 |
731 |
5.65% |
41 |
690 |
Glass4 |
9 |
214 |
6.07% |
13 |
201 |
Ecoli4 |
7 |
336 |
6.74% |
23 |
313 |
Glass2 |
9 |
214 |
8.78% |
19 |
195 |
Vowel0 |
13 |
988 |
9.01% |
89 |
899 |
Page-blocks0 |
10 |
5472 |
10.23% |
560 |
4912 |
Ecoli3 |
7 |
336 |
10.88% |
37 |
299 |
Yeast3 |
8 |
1484 |
10.98% |
163 |
1321 |
Glass6 |
9 |
214 |
13.55% |
29 |
185 |
Segment0 |
19 |
2308 |
14.26% |
329 |
1979 |
Ecoli2 |
7 |
336 |
15.48% |
52 |
284 |
New-thyroid1 |
5 |
215 |
16.28% |
35 |
180 |
New-thyroid2 |
5 |
215 |
16.89% |
36 |
179 |
Ecoli1 |
7 |
336 |
22.92% |
77 |
259 |
Vehicle0 |
18 |
846 |
23.64% |
200 |
646 |
Glass0123vs456 |
9 |
214 |
23.83% |
51 |
163 |
Haberman |
3 |
306 |
27.42% |
84 |
222 |
Vehicle1 |
18 |
846 |
28.37% |
240 |
606 |
Vehicle2 |
18 |
846 |
28.37% |
240 |
606 |
Vehicle3 |
18 |
846 |
28.37% |
240 |
606 |
Yeast1 |
8 |
1484 |
28.91% |
429 |
1055 |
Glass0 |
9 |
214 |
32.71% |
70 |
144 |
Iris0 |
4 |
150 |
33.33% |
50 |
100 |
Pima |
8 |
768 |
34.84% |
268 |
500 |
Ecoli0vs1 |
7 |
220 |
35% |
77 |
143 |
Wisconsin |
9 |
683 |
35% |
239 |
444 |
Glass1 |
9 |
214 |
35.51% |
76 |
138 |
Mean |
9.39 |
919.94 |
17.61% |
120 |
799.94 |
Median |
8 |
482 |
15.48% |
52 |
444 |
The tables in this section show the number of subsamples computed for each data set for 99% coverage value. Table 3 refers to standard data sets and Table 4 refers to imbalanced data sets.
For imbalanced data sets preprocessed with SMOTE, only the total example number and the size of the minority class change from the data sets without the preprocessing. In these data sets the minority class has been oversampled with SMOTE until it has the same size as the majority class.
Table 3.
Subsample numbers for standard data sets.
Original |
Training sample |
Subsample set |
|
||||||
Data
set |
Size |
#Class |
%Min |
Size |
Min. Class Size |
Maj. Class Size |
Size |
Number |
|
lymphography |
148 |
4 |
1.36% |
119 |
2 |
66 |
12 |
99 |
|
ecoli |
336 |
8 |
0.6% |
269 |
2 |
115 |
48 |
86 |
|
car |
1728 |
4 |
3.77% |
1383 |
53 |
969 |
212 |
82 |
|
nursery |
1296 |
5 |
0.08% |
1037 |
1 |
346 |
105 |
74 |
|
cleveland |
297 |
5 |
4.38% |
238 |
11 |
129 |
55 |
52 |
|
zoo |
101 |
7 |
3.97% |
81 |
4 |
33 |
28 |
36 |
|
glass |
214 |
6 |
4.21% |
172 |
8 |
62 |
48 |
34 |
|
flare |
1066 |
6 |
4.04% |
853 |
35 |
265 |
210 |
33 |
|
abalone |
418 |
22 |
0.24% |
335 |
1 |
56 |
154 |
35 |
|
balance |
625 |
3 |
7.84% |
500 |
40 |
231 |
120 |
25 |
|
dermatology |
358 |
6 |
5.59% |
287 |
17 |
89 |
102 |
22 |
|
hepatitis |
80 |
2 |
16.25% |
64 |
11 |
54 |
22 |
21 |
|
newthyroid |
215 |
3 |
13.96% |
172 |
24 |
120 |
72 |
21 |
|
haberman |
306 |
2 |
26.48% |
245 |
65 |
181 |
130 |
11 |
|
breast |
277 |
2 |
29.25% |
222 |
65 |
158 |
130 |
9 |
|
german |
1000 |
2 |
30% |
800 |
240 |
560 |
480 |
9 |
|
wisconsin |
630 |
2 |
34.61% |
504 |
175 |
330 |
350 |
7 |
|
contraceptive |
1473 |
3 |
22.61% |
1179 |
267 |
504 |
801 |
7 |
|
tictactoe |
958 |
2 |
34.66% |
767 |
266 |
502 |
532 |
7 |
|
pima |
768 |
2 |
34.9% |
615 |
215 |
401 |
430 |
6 |
|
magic |
1902 |
2 |
35.13% |
1522 |
535 |
988 |
1070 |
6 |
|
wine |
178 |
3 |
26.97% |
143 |
39 |
58 |
117 |
5 |
|
bupa |
345 |
2 |
42.03% |
276 |
116 |
160 |
232 |
4 |
|
heart |
270 |
2 |
44.45% |
216 |
96 |
120 |
192 |
3 |
|
australian |
690 |
2 |
44.5% |
552 |
246 |
307 |
492 |
3 |
|
crx |
653 |
2 |
45.33% |
523 |
238 |
286 |
476 |
3 |
|
vehicle |
846 |
4 |
23.53% |
677 |
160 |
175 |
640 |
3 |
|
penbased |
1100 |
10 |
9.55% |
880 |
84 |
92 |
840 |
3 |
|
ring |
740 |
2 |
49.6% |
592 |
294 |
299 |
588 |
3 |
|
iris[1] |
150 |
3 |
33.34% |
120 |
40 |
40 |
66 |
6 |
|
Mean |
638.94 |
4.27 |
22% |
511.44 |
111.67 |
256.54 |
291.8 |
24 |
|
Median |
521.5 |
3 |
23.07% |
417.5 |
59 |
167.5 |
173 |
9 |
|
Table 4:Subsample
amounts for imbalanced data sets
Original |
Training sample |
Subsample set |
|||||
Data
set |
Size |
%Min |
Size |
Min. Class Size |
Maj. Class Size |
Size |
Number |
Abalone19 |
4174 |
0.77 |
3340 |
26 |
3314 |
52 |
585 |
Yeast6 |
1484 |
2.49 |
1188 |
30 |
1158 |
60 |
176 |
Yeast5 |
1484 |
2.96 |
1189 |
36 |
1153 |
72 |
146 |
Yeast4 |
1484 |
3.43 |
1188 |
41 |
1147 |
82 |
127 |
Yeast2vs8 |
482 |
4.15 |
387 |
17 |
370 |
34 |
98 |
Glass5 |
214 |
4.2 |
173 |
8 |
165 |
16 |
93 |
Abalone9vs18 |
731 |
5.65 |
586 |
34 |
552 |
68 |
73 |
Glass4 |
214 |
6.07 |
172 |
11 |
161 |
22 |
66 |
Ecoli4 |
336 |
6.74 |
270 |
19 |
251 |
38 |
59 |
Glass2 |
214 |
8.78 |
173 |
16 |
157 |
32 |
43 |
Vowel0 |
988 |
9.01 |
792 |
72 |
720 |
144 |
44 |
Page-blocks0 |
5472 |
10.23 |
4378 |
448 |
3930 |
896 |
39 |
Ecoli3 |
336 |
10.88 |
270 |
30 |
240 |
60 |
35 |
Yeast3 |
1484 |
10.98 |
1188 |
131 |
1057 |
262 |
35 |
Glass6 |
214 |
13.55 |
173 |
24 |
149 |
48 |
27 |
Segment0 |
2308 |
14.26 |
1848 |
264 |
1584 |
528 |
26 |
Ecoli2 |
336 |
15.48 |
270 |
42 |
228 |
84 |
23 |
New-thyroid1 |
215 |
16.28 |
173 |
29 |
144 |
58 |
21 |
New-thyroid2 |
215 |
16.89 |
173 |
30 |
143 |
60 |
20 |
Ecoli1 |
336 |
22.92 |
270 |
62 |
208 |
124 |
14 |
Vehicle0 |
846 |
23.64 |
677 |
160 |
517 |
320 |
13 |
Glass0123vs456 |
214 |
23.83 |
172 |
41 |
131 |
82 |
13 |
Haberman |
306 |
27.42 |
246 |
68 |
178 |
136 |
10 |
Vehicle1 |
846 |
28.37 |
678 |
193 |
485 |
386 |
10 |
Vehicle2 |
846 |
28.37 |
678 |
193 |
485 |
386 |
10 |
Vehicle3 |
846 |
28.37 |
678 |
193 |
485 |
386 |
10 |
Yeast1 |
1484 |
28.91 |
1188 |
344 |
844 |
688 |
9 |
Glass0 |
214 |
32.71 |
172 |
56 |
116 |
112 |
7 |
Iris0 |
150 |
33.33 |
121 |
40 |
81 |
80 |
7 |
Pima |
768 |
34.84 |
616 |
215 |
401 |
430 |
6 |
Ecoli0vs1 |
220 |
35 |
177 |
62 |
115 |
124 |
6 |
Wisconsin |
683 |
35 |
548 |
192 |
356 |
384 |
6 |
Glass1 |
214 |
35.51 |
172 |
61 |
111 |
122 |
6 |
Mean |
919.94 |
17.61 |
737.09 |
96.61 |
640.48 |
193.21 |
56 |
Median |
482 |
15.48 |
387 |
42 |
356 |
84 |
23 |
This section includes the full tables of the results related to the algorithms compared in the study (PCTBagging with 11 consolidation percentages, Bagging, CTC, and C4.5) for the three performance metrics used in the study: AUC, Number of Internal Nodes, and Time. Numbers in bold indicate the best value for that particular dataset. In these tables we have treated C4.5 as reference for all algorithms. Cells with gray background indicate algorithms performing better than C4.5.
3.1
Results for the AUC measure
Table 5. AUC values for all algorithms over 96 datasets.
CTC |
PCTBagging |
Bagging |
C4.5 |
|||||||||||
|
|
100% |
90% |
80% |
70% |
60% |
50% |
40% |
30% |
20% |
10% |
0% |
|
|
1.Standard lymphography |
.7755 |
.8032 |
.7998 |
.7941 |
.7984 |
.8049 |
.8260 |
.8282 |
.8547 |
.8598 |
.8640 |
.8646 |
.8646 |
.8193 |
1.Standard ecoli |
.8942 |
.8884 |
.8894 |
.8903 |
.8935 |
.8985 |
.9057 |
.9066 |
.9119 |
.9198 |
.9391 |
.9392 |
.9392 |
.8780 |
1.Standard car |
.9468 |
.9450 |
.9472 |
.9452 |
.9421 |
.9388 |
.9358 |
.9339 |
.9307 |
.9343 |
.9366 |
.9459 |
.9459 |
.9681 |
1.Standard nursery |
.9646 |
.9570 |
.9559 |
.9544 |
.9519 |
.9498 |
.9479 |
.9457 |
.9431 |
.9446 |
.9464 |
.9455 |
.9455 |
.9610 |
1.Standard cleveland |
.6668 |