Additional material for the article CT<DT>:
extending the application of the consolidation
methodology even further”
This page contains the full tables related to
the work presented in the article “CT<DT>: extending the application of the consolidation methodology even
further
First, we present the table with the
characteristics for the 36 real world problem datasets used in this study.
Then, we include the full tables of the results
related for all algorithms compared on each context and the average aligned
ranks and p-values for them compared
to the best ranking algorithm.
Index
·
Table 1. Description of standard datasets.
·
Table 2. Description of imbalanced datasets.
·
Table 3. Subsamble numbers for standard datasets to achieve a
coverage of 99%.
·
Table 4. Subsamble numbers for imbalance datasets to
achieve a coverage of 99%.
·
Table 5. Average performance values for all algorithms on
standard datasets.
·
Table 8. Average performance values for all algorithms on
imbalanced datasets.
The tables in this section summarize the characteristics of each data
set used in the article. Table 1 refers to standard data sets
while Table 2 refers to imbalanced data sets.
Data set |
#Atts. |
#Examples |
#Classes |
%min |
%maj |
Size Of
Min. Class |
Size of
Maj. Class |
|
lymphography |
18 |
148 |
4 |
1.36% |
54.73% |
2 |
81 |
|
ecoli |
7 |
336 |
8 |
0.6% |
42.56% |
2 |
143 |
|
car |
6 |
1728 |
4 |
3.77% |
70.03% |
65 |
1210 |
|
nursery |
8 |
1296 |
5 |
0.08% |
33.34% |
1 |
432 |
|
cleveland |
13 |
297 |
5 |
4.38% |
53.88% |
13 |
160 |
|
zoo |
17 |
101 |
7 |
3.97% |
40.6% |
4 |
41 |
|
glass |
9 |
214 |
6 |
4.21% |
35.52% |
9 |
76 |
|
flare |
10 |
1066 |
6 |
4.04% |
31.06% |
43 |
331 |
|
abalone |
8 |
418 |
22 |
0.24% |
16.51% |
1 |
69 |
|
balance |
4 |
625 |
3 |
7.84% |
46.08% |
49 |
288 |
|
dermatology |
33 |
358 |
6 |
5.59% |
31.01% |
20 |
111 |
|
hepatitis |
19 |
80 |
2 |
16.25% |
83.75% |
13 |
67 |
|
newthyroid |
5 |
215 |
3 |
13.96% |
69.77% |
30 |
150 |
|
haberman |
3 |
306 |
2 |
26.48% |
73.53% |
81 |
225 |
|
breast |
9 |
277 |
2 |
29.25% |
70.76% |
81 |
196 |
|
german |
20 |
1000 |
2 |
30% |
70% |
300 |
700 |
|
wisconsin |
9 |
630 |
2 |
34.61% |
65.4% |
218 |
412 |
|
contraceptive |
9 |
1473 |
3 |
22.61% |
42.71% |
333 |
629 |
|
tictactoe |
9 |
958 |
2 |
34.66% |
65.35% |
332 |
626 |
|
pima |
8 |
768 |
2 |
34.9% |
65.11% |
268 |
500 |
|
magic |
10 |
1902 |
2 |
35.13% |
64.88% |
668 |
1234 |
|
wine |
13 |
178 |
3 |
26.97% |
39.89% |
48 |
71 |
|
bupa |
6 |
345 |
2 |
42.03% |
57.98% |
145 |
200 |
|
heart |
13 |
270 |
2 |
44.45% |
55.56% |
120 |
150 |
|
australian |
14 |
690 |
2 |
44.5% |
55.51% |
307 |
383 |
|
crx |
15 |
653 |
2 |
45.33% |
54.68% |
296 |
357 |
|
vehicle |
18 |
846 |
4 |
23.53% |
25.77% |
199 |
218 |
|
penbased |
16 |
1100 |
10 |
9.55% |
10.46% |
105 |
115 |
|
ring |
20 |
740 |
2 |
49.6% |
50.41% |
367 |
373 |
|
iris |
4 |
150 |
3 |
33.34% |
33.34% |
50 |
50 |
|
Mean |
11.77 |
638.93 |
4.27 |
21% |
50% |
139 |
319.93 |
|
Median |
9.5 |
521.5 |
3 |
23% |
54% |
73 |
209 |
Table 1. Description of standard datasets.
Data set |
#Atts. |
#Examples |
Imbalance |
Size Of
Min. Class |
Size of
Maj. Class |
Abalone19 |
8 |
4174 |
0.77% |
32 |
4142 |
Yeast6 |
8 |
1484 |
2.49% |
37 |
1447 |
Yeast5 |
8 |
1484 |
2.96% |
44 |
1440 |
Yeast4 |
8 |
1484 |
3.43% |
51 |
1433 |
Yeast2vs8 |
8 |
482 |
4.15% |
20 |
462 |
Glass5 |
9 |
214 |
4.2% |
9 |
205 |
Abalone9vs18 |
8 |
731 |
5.65% |
41 |
690 |
Glass4 |
9 |
214 |
6.07% |
13 |
201 |
Ecoli4 |
7 |
336 |
6.74% |
23 |
313 |
Glass2 |
9 |
214 |
8.78% |
19 |
195 |
Vowel0 |
13 |
988 |
9.01% |
89 |
899 |
Page-blocks0 |
10 |
5472 |
10.23% |
560 |
4912 |
Ecoli3 |
7 |
336 |
10.88% |
37 |
299 |
Yeast3 |
8 |
1484 |
10.98% |
163 |
1321 |
Glass6 |
9 |
214 |
13.55% |
29 |
185 |
Segment0 |
19 |
2308 |
14.26% |
329 |
1979 |
Ecoli2 |
7 |
336 |
15.48% |
52 |
284 |
New-thyroid1 |
5 |
215 |
16.28% |
35 |
180 |
New-thyroid2 |
5 |
215 |
16.89% |
36 |
179 |
Ecoli1 |
7 |
336 |
22.92% |
77 |
259 |
Vehicle0 |
18 |
846 |
23.64% |
200 |
646 |
Glass0123vs456 |
9 |
214 |
23.83% |
51 |
163 |
Haberman |
3 |
306 |
27.42% |
84 |
222 |
Vehicle1 |
18 |
846 |
28.37% |
240 |
606 |
Vehicle2 |
18 |
846 |
28.37% |
240 |
606 |
Vehicle3 |
18 |
846 |
28.37% |
240 |
606 |
Yeast1 |
8 |
1484 |
28.91% |
429 |
1055 |
Glass0 |
9 |
214 |
32.71% |
70 |
144 |
Iris0 |
4 |
150 |
33.33% |
50 |
100 |
Pima |
8 |
768 |
34.84% |
268 |
500 |
Ecoli0vs1 |
7 |
220 |
35% |
77 |
143 |
Wisconsin |
9 |
683 |
35% |
239 |
444 |
Glass1 |
9 |
214 |
35.51% |
76 |
138 |
Mean |
9.39 |
919.94 |
17.61% |
120 |
799.94 |
Median |
8 |
482 |
15.48% |
52 |
444 |
Table 2. Description of imbalanced datasets.
The tables in this section show the number of subsamples for a coverage
value of 99%. Table 3 refers to standard datasets and Table 45 refers to imbalanced datasets.
For standard datasets the MinCover column
represent the minimum number of examples of each class as stated by the rule
and exceptions in the methodology section of the article. The data sets where
the size of classes in the subsamples is enforced by the MinCover as opposed to
the size of the minority class are stressed in bold.
For imbalanced data sets preprocessed with
SMOTE, only the total example number and the size of the minority class change
from the data sets without the preprocessing. In these data sets the minority
class has been oversampled with SMOTE until it has the same size as the
majority class.
|
Original |
Training
sample |
Subsample |
|
Coverage 99% |
|||||
Data set |
Size |
#Class |
%Min |
Size |
N_S |
MinCover[1] |
Maj.
Class Size |
Size |
|
N_S |
|
|
|
|
|
||||||
lymphography |
148 |
4 |
1.36% |
119 |
2 |
2 |
66 |
12 |
4.55% |
99 |
ecoli |
336 |
8 |
0.6% |
269 |
2 |
3 |
115 |
48 |
5.22% |
86 |
car |
1728 |
4 |
3.77% |
1383 |
53 |
14 |
969 |
212 |
5.47% |
82 |
nursery |
1296 |
5 |
0.08% |
1037 |
1 |
11 |
346 |
105 |
6.07% |
74 |
cleveland |
297 |
5 |
4.38% |
238 |
11 |
3 |
129 |
55 |
8.53% |
52 |
zoo |
101 |
7 |
3.97% |
81 |
4 |
1 |
33 |
28 |
12.13% |
36 |
glass |
214 |
6 |
4.21% |
172 |
8 |
2 |
62 |
48 |
12.91% |
34 |
flare |
1066 |
6 |
4.04% |
853 |
35 |
9 |
265 |
210 |
13.21% |
33 |
abalone |
418 |
22 |
0.24% |
335 |
1 |
4 |
56 |
154 |
12.5% |
35 |
balance |
625 |
3 |
7.84% |
500 |
40 |
5 |
231 |
120 |
17.32% |
25 |
dermatology |
358 |
6 |
5.59% |
287 |
17 |
3 |
89 |
102 |
19.11% |
22 |
hepatitis |
80 |
2 |
16.25% |
64 |
11 |
1 |
54 |
22 |
20.38% |
21 |
newthyroid |
215 |
3 |
13.96% |
172 |
24 |
2 |
120 |
72 |
20% |
21 |
haberman |
306 |
2 |
26.48% |
245 |
65 |
3 |
181 |
130 |
35.92% |
11 |
breast |
277 |
2 |
29.25% |
222 |
65 |
3 |
158 |
130 |
41.14% |
9 |
german |
1000 |
2 |
30% |
800 |
240 |
8 |
560 |
480 |
42.86% |
9 |
wisconsin |
630 |
2 |
34.61% |
504 |
175 |
6 |
330 |
350 |
53.04% |
7 |
contraceptive |
1473 |
3 |
22.61% |
1179 |
267 |
12 |
504 |
801 |
52.98% |
7 |
tictactoe |
958 |
2 |
34.66% |
767 |
266 |
8 |
502 |
532 |
52.99% |
7 |
pima |
768 |
2 |
34.9% |
615 |
215 |
7 |
401 |
430 |
53.62% |
6 |
magic |
1902 |
2 |
35.13% |
1522 |
535 |
16 |
988 |
1070 |
54.15% |
6 |
wine |
178 |
3 |
26.97% |
143 |
39 |
2 |
58 |
117 |
67.25% |
5 |
bupa |
345 |
2 |
42.03% |
276 |
116 |
3 |
160 |
232 |
72.5% |
4 |
heart |
270 |
2 |
44.45% |
216 |
96 |
3 |
120 |
192 |
80% |
3 |
australian |
690 |
2 |
44.5% |
552 |
246 |
6 |
307 |
492 |
80.14% |
3 |
crx |
653 |
2 |
45.33% |
523 |
238 |
6 |
286 |
476 |
83.22% |
3 |
vehicle |
846 |
4 |
23.53% |
677 |
160 |
7 |
175 |
640 |
91.43% |
3 |
penbased |
1100 |
10 |
9.55% |
880 |
84 |
9 |
92 |
840 |
91.31% |
3 |
ring |
740 |
2 |
49.6% |
592 |
294 |
6 |
299 |
588 |
98.33% |
3 |
iris[2] |
150 |
3 |
33.34% |
120 |
40 |
2 |
40 |
66 |
55% |
6 |
Mean |
638.94 |
4.27 |
22% |
511.44 |
111.67 |
5.57 |
256.54 |
291.8 |
43% |
24 |
Median |
521.5 |
3 |
23.07% |
417.5 |
59 |
4.5 |
167.5 |
173 |
42% |
9 |
Table 3. Subsamble numbers for standard datasets to
achieve a coverage of 99%.
|
Original |
Training sample |
Subsample |
|
Coverage 99% |
|||
Data set |
Size |
%Min |
Size |
Min.
Class Size |
Maj.
Class Size |
Size |
|
N_S |
|
|
|
|
|
||||
Abalone19 |
4174 |
0.77 |
3340 |
26 |
3314 |
52 |
0.78% |
585 |
Yeast6 |
1484 |
2.49 |
1188 |
30 |
1158 |
60 |
2.59% |
176 |
Yeast5 |
1484 |
2.96 |
1189 |
36 |
1153 |
72 |
3.12% |
146 |
Yeast4 |
1484 |
3.43 |
1188 |
41 |
1147 |
82 |
3.57% |
127 |
Yeast2vs8 |
482 |
4.15 |
387 |
17 |
370 |
34 |
4.59% |
98 |
Glass5 |
214 |
4.2 |
173 |
8 |
165 |
16 |
4.85% |
93 |
Abalone9vs18 |
731 |
5.65 |
586 |
34 |
552 |
68 |
6.16% |
73 |
Glass4 |
214 |
6.07 |
172 |
11 |
161 |
22 |
6.83% |
66 |
Ecoli4 |
336 |
6.74 |
270 |
19 |
251 |
38 |
7.57% |
59 |
Glass2 |
214 |
8.78 |
173 |
16 |
157 |
32 |
10.19% |
43 |
Vowel0 |
988 |
9.01 |
792 |
72 |
720 |
144 |
10% |
44 |
Page-blocks0 |
5472 |
10.23 |
4378 |
448 |
3930 |
896 |
11.4% |
39 |
Ecoli3 |
336 |
10.88 |
270 |
30 |
240 |
60 |
12.5% |
35 |
Yeast3 |
1484 |
10.98 |
1188 |
131 |
1057 |
262 |
12.39% |
35 |
Glass6 |
214 |
13.55 |
173 |
24 |
149 |
48 |
16.11% |
27 |
Segment0 |
2308 |
14.26 |
1848 |
264 |
1584 |
528 |
16.67% |
26 |
Ecoli2 |
336 |
15.48 |
270 |
42 |
228 |
84 |
18.42% |
23 |
New-thyroid1 |
215 |
16.28 |
173 |
29 |
144 |
58 |
20.14% |
21 |
New-thyroid2 |
215 |
16.89 |
173 |
30 |
143 |
60 |
20.98% |
20 |
Ecoli1 |
336 |
22.92 |
270 |
62 |
208 |
124 |
29.81% |
14 |
Vehicle0 |
846 |
23.64 |
677 |
160 |
517 |
320 |
30.95% |
13 |
Glass0123vs456 |
214 |
23.83 |
172 |
41 |
131 |
82 |
31.3% |
13 |
Haberman |
306 |
27.42 |
246 |
68 |
178 |
136 |
38.2% |
10 |
Vehicle1 |
846 |
28.37 |
678 |
193 |
485 |
386 |
39.79% |
10 |
Vehicle2 |
846 |
28.37 |
678 |
193 |
485 |
386 |
39.79% |
10 |
Vehicle3 |
846 |
28.37 |
678 |
193 |
485 |
386 |
39.79% |
10 |
Yeast1 |
1484 |
28.91 |
1188 |
344 |
844 |
688 |
40.76% |
9 |
Glass0 |
214 |
32.71 |
172 |
56 |
116 |
112 |
48.28% |
7 |
Iris0 |
150 |
33.33 |
121 |
40 |
81 |
80 |
49.38% |
7 |
Pima |
768 |
34.84 |
616 |
215 |
401 |
430 |
53.62% |
6 |
Ecoli0vs1 |
220 |
35 |
177 |
62 |
115 |
124 |
53.91% |
6 |
Wisconsin |
683 |
35 |
548 |
192 |
356 |
384 |
53.93% |
6 |
Glass1 |
214 |
35.51 |
172 |
61 |
111 |
122 |
54.95% |
6 |
Mean |
919.94 |
17.61 |
737.09 |
96.61 |
640.48 |
193.21 |
24.04% |
56 |
Median |
482 |
15.48 |
387 |
42 |
356 |
84 |
18.42% |
23 |
Table 4. Subsamble numbers for imbalance
datasets to achieve a coverage of 99%.
Algorithm |
Accuracy |
Kappa |
XCS |
77.81±4.12 |
58.66 ±8.74 |
SIA |
74.65±3.58 |
52.37 ±6.96 |
OCEC |
70.42±4.67 |
48.40 ±8.10 |
GAssist |
77.78±3.71 |
59.53 ±7.31 |
Oblique-DT |
76.58±3.34 |
57.79 ±6.47 |
CART |
73.91±3.91 |
51.97 ±7.44 |
AQ |
67.77±5.18 |
42.40 ±9.71 |
CN2 |
72.80±3.51 |
44.84 ±7.46 |
C4.5 |
77.93±3.19 |
58.51±5.82 |
C4.5-Rules |
76.59±4.10 |
57.17 ±7.79 |
Ripper |
73.96±3.24 |
56.43 ±7.12 |
CHAID* |
78.58±3.08 |
59.75±6.41 |
C4.4 |
76.67±3.41 |
56.79±6.43 |
CHAIC |
78.30±2.97 |
59.40±6.27 |
CTC45 |
77.69±3.49 |
58.16±6.96 |
CTCHAID |
76.45±3.77 |
56.84±7.08 |
CTC44 |
74.72±3.90 |
55.21±6.90 |
CTCHAIC |
71.79±5.12 |
53.96±7.40 |
Table 5. Average performance values for all algorithms
on standard datasets.
Comparison |
Average Friedman Aligned Rank |
p-value
(Holm adjusted) |
CHAID*
vs. AQ |
419.8667 |
0 |
CHAID*
vs. OCEC |
392.5833 |
0 |
CHAID*
vs.CN2 |
354.8667 |
0.00003 |
CHAID*
vs.CTCHAIC |
346.3167 |
0.000078 |
CHAID*
vs.CTC44 |
329.4333 |
0.000484 |
CHAID*
vs. RIPPER |
325.4 |
0.000688 |
CHAID*
vs. CART |
307.6 |
0.003753 |
CHAID*
vs. SIA |
285.9167 |
0.023375 |
CHAID*
vs. Oblique-DT |
271.25 |
0.066347 |
CHAID*
vs. C4.5-Rules |
262.8 |
0.108147 |
CHAID*
vs. C4.4 |
253.2833 |
0.178572 |
CHAID*
vs. CTCHAID |
240.8333 |
0.325714 |
CHAID*
vs. CTC45 |
198.6833 |
1 |
CHAID*
vs. C4.5 |
188.7 |
1 |
CHAID*
vs. CHAIC |
179.0667 |
1 |
CHAID*
vs. GASSIST |
176.6167 |
1 |
CHAID*
vs. XCS |
172.4833 |
1 |
CHAID* |
163.3 |
- |
Table 6.
Average Friedman Aligned Ranks and p-values
according to Holm’s test the standard classification context for the Accuracy
metric
Comparison |
Average Friedman Aligned Rank |
p-value
(Holm adjusted) |
CHAID*
vs AQ |
423.4667 |
0 |
CHAID*
vs. CN2 |
414.4 |
0 |
CHAID*
vs. C4.5-Rules |
414.4 |
0 |
CHAID*
vs. OCEC |
362.4667 |
0.000051 |
CHAID*
vs. CART |
310.1333 |
0.01126 |
CHAID*
vs. CTC44 |
287.3667 |
0.06818 |
CHAID*
vs. SIA |
285.65 |
0.071162 |
CHAID*
vs. CTCHAIC |
271.8667 |
0.17272 |
CHAID*
vs. RIPPER |
260.3667 |
0.325211 |
CHAID*
vs. Oblique-DT |
247.8667 |
0.59392 |
CHAID*
vs. C4.4 |
244.3 |
0.628407 |
CHAID*
vs. CTCHAID |
229.0667 |
1 |
CHAID*
vs. CTC45 |
209.8 |
1 |
CHAID*
vs. C4.5 |
189.9667 |
1 |
CHAID*
vs. CHAIC |
184.3167 |
1 |
CHAID*
vs. GASSIST |
179.4 |
1 |
CHAID*
vs. XCS |
178.2167 |
1 |
CHAID* |
175.95 |
- |
Table 7. Average
Friedman Aligned Ranks and p-values
according to Holm’s test for the standard classification context for the Kappa
metric
Algorithm |
GM |
UCS |
64.92±16.55 |
SIA |
69.92±9.49 |
OCEC |
70.88±10.38 |
GAssist |
67.58±9.69 |
Oblique-DT |
75.81±8.55 |
CART |
69.72±11.51 |
AQ |
59.81±8.72 |
CN2 |
45.97±12.09 |
C4.5 |
73.49±9.52 |
C4.5-Rules |
75.21±10.23 |
Ripper |
79.34±8.98 |
CHAID* |
69.10±8.76 |
C4.4 |
72.80±9.47 |
CHAIC |
69.10±8.47 |
CTC45 |
79.99±8.02 |
CTCHAID |
80.93±7.70 |
CTC44 |
81.85±7.09 |
CTCHAIC |
82.52±6.36 |
Table 8.
Average performance values for all algorithms on imbalanced datasets.
Comparison |
Average Friedman Aligned Rank |
p-value
(Holm adjusted) |
CTC44
vs. CN2 |
524.1364 |
0 |
CTC44
vs. AQ |
450.2121 |
0 |
CTC44
vs. UCS |
356.5152 |
0.000051 |
CTC44
vs. SIA |
354.2121 |
0.000062 |
CTC44
vs. OCEC |
354.1212 |
0.000062 |
CTC44
vs. CART |
349 |
0.000095 |
CTC44
vs. CHAID* |
347.2273 |
0.000106 |
CTC44
vs. CHAIC |
346.3788 |
0.000106 |
CTC44
vs. GASSIST |
336.5909 |
0.000271 |
CTC44
vs. C4.4 |
280.1818 |
0.036343 |
CTC44
vs. C4.5 |
277.5758 |
0.038512 |
CTC44
vs. Oblique-DT |
256.7727 |
0.134333 |
CTC44
vs. C4.5-Rules |
248.1212 |
0.188118 |
CTC44
vs. CTCHAID |
192.1212 |
1 |
CTC44
vs. RIPPER |
183.3182 |
1 |
CTC44
vs. CTC45 |
176.3939 |
1 |
CTC44
vs. CTCHAIC |
161.8333 |
1 |
CTC44 |
160.2879 |
- |
Table 9.
Average Friedman Aligned Ranks and p-values
according to Holm’s test for the imbalanced classification context for the GM
metric
Algorithm |
GM |
XCS |
84.92±5.69 |
SIA |
81.79±6.56 |
CORE |
76.19±8.77 |
GAssist |
83.69±7.26 |
DT-GA |
80.61±7.66 |
CART |
70.55±11.69 |
AQ |
52.52±7.61 |
CN2 |
63.61±10.39 |
C4.5 |
80.68±6.09 |
C4.5-Rules |
81.79±7.36 |
Ripper |
79.48±10.56 |
CHAID* |
80.65±6.14 |
C4.4 |
80.47±6.21 |
CHAIC |
79.73±6.44 |
CTC45 |
83.54±6.84 |
CTCHAID |
82.99±6.99 |
CTC44 |
82.63±7.10 |
CTCHAIC |
79.81±8.42 |
Table 10. Average
performance values for all algorithms on imbalanced datasets preprocessed with
SMOTE.
Comparison |
Average Friedman Aligned Rank |
p-value
(Holm adjusted) |
XCS
vs. AQ |
541.0455 |
0 |
XCS
vs. CN2 |
499.8333 |
0 |
XCS
vs. CART |
432.3182 |
0 |
XCS
vs. CORE |
339.8939 |
0.001702 |
XCS
vs.RIPPER |
316.9697 |
0.012551 |
XCS
vs.CTCHCAIC |
313.8939 |
0.01498 |
XCS
vs. CHAIC |
306.5606 |
0.024837 |
XCS
vs. C4.4 |
281.303 |
0.140414 |
XCS
vs. CHAID* |
280.0303 |
0.140414 |
XCS
vs. DT-GA |
272.9545 |
0.191265 |
XCS
vs. C4.5 |
267.9242 |
0.226744 |
XCS
vs. SIA |
249 |
0.544311 |
XCS
vs. CTC44 |
233.5303 |
0.925082 |
XCS
vs. C4.5-Rules |
228.803 |
0.925082 |
XCS
vs. CTCHAID |
226.1515 |
0.925082 |
XCS
vs. CTC45 |
200.5152 |
1 |
XCS
vs. GASSIST |
186.7424 |
1 |
XCS |
177.5303 |
- |
Table 11.
Average Friedman Aligned Ranks and p-values
according to Holm’s test for the imbalanced classification context (with SMOTE)
for the GM metric
Comparison |
Average
Friedman Aligned Rank |
p-value
(Holm adjusted) |
CTC45
vs. CN2 |
1632.1406 |
0 |
CTC45
vs. AQ |
1592.401 |
0 |
CTC45
vs. CORE |
1522.5052 |
0 |
CTC45
vs. OCEC |
1283.7812 |
0 |
CTC45
vs. CART |
1212.4792 |
0 |
CTC45
vs. UCS |
1154.1719 |
0 |
CTC45
vs. SIA |
1004.8073 |
0.000328 |
CTC45
vs. C4.5-Rules |
1003.5781 |
0.000328 |
CTC45
vs. DT-GA |
967.1302 |
0.001875 |
CTC45
vs. CHAIC |
936.3281 |
0.007035 |
CTC45
vs. CHAID* |
897.7917 |
0.031205 |
CTC45
vs. C4.4 |
894.7656 |
0.031543 |
CTC45
vs. Oblique-DT |
873.4844 |
0.06135 |
CTC45
vs. CTCHAIC |
827.875 |
0.235995 |
CTC45
vs. RIPPER |
822.8229 |
0.235995 |
CTC45
vs. XCS |
818.4375 |
0.235995 |
CTC45
vs. C4.5 |
811.1302 |
0.235995 |
CTC45
vs. GASSIST |
801.2552 |
0.235995 |
CTC45
vs. CTC44 |
751.9688 |
0.444885 |
CTC45
vs. CTCHAID |
720.1875 |
0.444885 |
CTC45 |
649.4583 |
- |
Table 12.
Average Friedman Aligned Ranks and p-values
according to Holm’s test for global classification
For the sake
of replicability we publish the average results obtained by all the used
algorithms on all three classification contexts, dataset by dataset.